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Chapter 4 

Calculus of Functions of Several Variables 

4.1 Definition 

Definition: Let D be a set of order pairs of real numbers, D    . Then       is said to be a 

function two variables   and   iff to each order pair       in D, there is a unique real number 

such that         . Of course, x and y are called independent variables and z is dependent 

variable, since its value is determined by the values of x and y.  In addition (in a simple term), 

this function is function of two variables. 

Generally, functions of two or more variables are called functions of several variables. 

4.2 Domain and Range of the functions of several Variables 

Domain, D(f): The set of all values of the variables of the function f. 

Range, R(f): The set of all values (images) of the function f. 

Example: Find the domain and range of the function         √        . 

Solution: Here, for the square root to be defined we must have 

                     Therefore D(f)={               } 

Since the square root function is nonnegative, we’ve 

√               

Moreover, √                      

Therefore, R(f)= [    . 

Exercise: Find domain and range of the function        
√    

√     
 . 

Read More: Level curves and level surfaces of function   of several variables. 
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4.3 Limit and Continuity of Functions of Several Variables 

Definition: Let   be a function of two variables whose domain    includes points arbitrarily 

close to         Then we say that the limit of        as       approaches        is L and we 

write 

   
           

         

If for every number     there is a corresponding number     such that  

If         and   √                 then |        |   . 

Note:  

1. The values        of approach the number   as the point       approaches the point 

      along any path that stays within the domain of  . 

2. If           as             along  a path    and           as             

along  a path    where       , then                      does not exist. 

3. Everything that we have done in this section can be extended to functions of three or 

more variables. 

Exercise: Show that         
     

      does not exist. 

Method of Limit evaluations 

One can be sure that the computation or checking existence of limits of functions of several 

variables is not an easy task. Based on the type/family of the function, most common methods of 

the limit evaluations are: 

1. Direct substitution 

2. Factorization 

3. Rationalization 

4. Polar  coordinate 

5. Squeezing theorem (refer your text books) 

Let’s see one by one each of the techniques. 

1. Direct Substitution 

If   is defined at        then                              

Example: Evaluate                             

Solution: Since the given function if defined at (0,2), so, by direct substitution, we’ve 
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2. Factorization: sometimes the direct substitution may not work. So, we need to look for 

different method may be factorization method. This method used to eliminate the term 

that creates a problem in limit evaluation. 

Example: Evaluate               
     

   
. 

Solution: Here, we cannot evaluate the limit directly. 

But we know that                           

Thus,               
     

   
                

               

   
                

          

3. Rationalization: This technique mostly uses when the limit under consideration involves 

difference of radical expressions. 

Example: Evaluate               
     

√          
 

Solution: By rationalizing the denominator,  

   
           

     

√          
     

           
(

     

√          
)(

√          

√          
)          

    
           

       (√          )

         
    

           
(√          )

   

4. Polar Coordinates method: Many limit problems which cannot be evaluated by any of 

the above techniques can be evaluated easily using polar coordinates as           

                 and as                   

Example: Evaluate               
     

√     
 

Solution: Use                            and as                   

   
           

     

√     
    

    

               

√               
    

    

               

  √           
 

    
    

              

√           
    

    

              

√ 
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Reading Assignment: Limit evaluation by Squeezing theorem and L’Hospital’s rule. 

 

Definition (Continuity): A function        is continuous at a point       if  

                               

Otherwise, f is not continuous. 

Example: Verify that the function        {

      

   
            

             
 is continuous at (      

Solution: Let’s evaluate the limit, 

   
           

      

   
    

           

       

      
    

           

       

   
     

           

      

   
 

                        Hint     
   

    

 
    .  Moreover         . 

Since,    
           

                then f is continuous at              

Exercise: Verify whether the function        {

   

√     
            

             
 is continuous or not at 

(      
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4.4 Partial Derivatives 

In this section we will introduce the idea of partial derivatives as well as the standard notations 

and how to compute them. Recall that given a function of one variable,      , the derivative, 

     , represents the rate of change of the function as   changes. This is an important 

interpretation of derivatives and we are not going to want to lose it with functions of more than 

one variable. The problem with functions of more than one variable is that there is more than one 

variable. 

Definition: Let           Then, the partial derivatives of with respect to   and   are the 

functions denoted by    and    respectively and defined by 

               
               

 
   and 

               
               

 
  provided that these limits exist. 

Given the function          the following are all equivalent notations, 

             
  

  
 

         

  
    

  

  
       (The partial derivative of   with respect to  ) 

             
  

  
 

         

  
    

  

  
      (The partial derivative of   with respect to  ) 

Note that these two partial derivatives are sometimes called the first order partial derivatives. 

Moreover, the partial derivative of        with respect to x at a given point       is given by 

                                    
  

  
      

  

  
|                                   and 

The partial derivative of        with respect to y at a given point       is given by 

         
  

  
      

  

  
|      

The rule is that when we want to find     we hold y fixed and allow x to vary and to find     we 

hold x fixed and allow y to vary. Besides, all derivatives rules can be used in the usual way as of 

in functions of single variable on applied mathematics I.  

Note: We can define the partial derivatives of three variables in a similar way as we did for two 

variables here above. 
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Example: Find all of the first order partial derivatives for 

a.            (
 

 
)         

 

b.            (√        ) 

Solution: 

a. In this case both the cosine and the exponential contain  ’s and so we have really got a 

product of two functions involving  ’s and so we will need to product rule of derivatives 

this up. Here is the derivative with respect to x. 

            (
 

 
) (

  

  
)         

     (
 

 
)         

      

Do not forget the chain rule for functions of one variable! 

Now, let’s differentiate with respect to y. In this case we don’t have a product rule to worry about 

since the only place that the   shows up is in the exponential. Therefore, since  ’s are considered 

to be constants for this derivative, the cosine in the front will also be thought of as a 

multiplicative constant. 

So,                     (
 

 
)         

  

b.             
 

√        

 

  
(√        )  

 

√        
 

  

 √        
 

 

         

 

Similarly,            
 

                                       
 

         

4.4.1 Partial Derivative at a point and its interpretation 

As with functions of single variables partial derivatives represent the rates of change of the 

functions as the variables change. As we saw in the previous section,         represents the rate 

of change of the function        as we change   and hold   fixed while          represents the 

rate of change of        as we change   and hold   fixed. 

Example: Determine if        
  

  
 is increasing or decreasing at (    . 

a.  if we allow   to vary and hold   fixed. 

b.  if we allow   to vary and hold   fixed. 

Solution:  

a. if we allow   to vary and hold   fixed. 

In this case we will first need         and its value at the point. 
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So, the partial derivative with respect to   is positive and so if we hold   fixed the function is 

increasing at       as we vary  . 

b. if we allow   to vary and hold   fixed. 

In this case we will first need         and its value at the point. 

        
    

                                        
   

   
   

So, the partial derivative with respect to   is negative and so the function is increasing at       as 

we vary   and hold   fixed. 

4.4.2 Higher Order Partial Derivatives 

Just as we had higher order derivatives with functions of one variable we will also have higher 

order derivatives of functions of more than one variable. 

Consider the case of a function of two variables,         since both of the first order partial 

derivatives are also functions of   and   we could in turn differentiate each with respect to   or 

 . This means that for the case of a function of two variables there will be a total of four possible 

second order derivatives. Here they are and the notations to denote them: 

          
 

  
(
  

  
)  

   

   
 

          
 

  
(
  

  
)  

   

    
 

(  )      
 

  
(
  

  
)  

   

    
 

(  )      
 

  
(
  

  
)  

   

   
 

The second and third second order partial derivatives are often called mixed partial derivatives 

since we are taking derivatives with respect to more than one variable. Note as well that the order 

that we take the derivatives in is given by the notation for each these. If we are using the 

subscripting notation, e.g.     , then we will differentiate from left to right. In other words, in this 

case, we will differentiate first with respect to   and then with respect to  . With the fractional 

notation, e.g.  
   

    
, it is the opposite. In these cases we differentiate moving along the 
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denominator from right to left. So, again, in this case we differentiate with respect to   first and 

then  . 

Example: Find all the second order derivatives for                         . 

Solution: We first need the first order derivatives, 

                        

                   

Now, let’s get the second order derivatives. 

                   

            

            

               

Now let’s also notice that, in this case,        . This leads us to the following theorem. 

Clairaut’s Theorem 

Suppose that   is defined on a disk   that contains the point      . If the functions 

    and     are continuous on this disk then, 

                  

Exercise: Verify Clairaut’s Theorem for               
   

Note that there are, of course, higher order derivatives as well. Here are a couple of the third 

order partial derivatives of function of two variables. 

     (   )  
 

  
(

   

    
)  

   

      
 

     (   )  
 

  
(

   

    
)  

   

     
 

Notice as well that for both of these we differentiate once with respect to   and twice with 

respect to  . There is also another third order partial derivative in which we can do this,      . 

There is an extension to Clairaut’s Theorem that says if all three of these are continuous then 

they should all be equal, 
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In general, we can extend Clairaut’s theorem to any function and mixed partial derivatives. The 

only requirement is that in each derivative we differentiate with respect to each variable the same 

number of times. 

Exercise 

a. Find        for                     

b. Find 
   

     
 for            

4.5 Chain Rule 

Recall that the Chain Rule for functions of a single variable gives the rule for differentiating a 

composite function. For functions of more than one variable, the Chain Rule has several 

versions, each of them giving a rule for differentiating a composite function. 

Case I: Suppose that          is a differentiable function of   and  , where        and 

       are both differentiable functions of  . Then   is a differentiable function of   and 

  

  
 

  

  
 
  

  
  

  

  
 
  

  
 

Example: If            where         and         find 
  

  
|   . 

Solution: The Chain rule gives 

  

  
 

  

  
 
  

  
  

  

  
 
  

  
 

                                      

It’s not necessary to substitute the expressions for   and   in terms of   . We simply observe that 

when    , we have          and         . Therefore, 

  

  
|                                

Case II: Suppose that          is a differentiable function of   and  , where          and 

         are both differentiable functions of  . Then   is a differentiable function of   and  . 

Then 
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This Chain Rule contains three types of variables:   and   are independent variables,   and   are 

called intermediate variables, and   is the dependent variable. 

To remember the Chain Rule, it’s helpful to draw the tree diagram!(refer your text book). 

Note that we can consider (or extend) both cases of the chain rules for the general situation, i.e, 

for dependent variable   that is differentiable function of the   independent variables. 

Example: If           where       and        find 
  

  
 and 

  

  
  

Solution: Applying Case II of the Chain Rule, we get 

  

  
 

  

  
 
  

  
  

  

  
 
  

  
                            

                                 

  

  
 

  

  
 
  

  
  

  

  
 
  

  
                            

                                 

4.6 Implicit Differentiation 

Before getting into implicit differentiation for multiple variable functions try to remember how 

implicit differentiation works for functions of one variable. Implicit differentiation works in 

exactly the same manner with functions of multiple variables. If we have a function in terms of 

three variables      and   we will assume that   is in fact a function of   and  . In other words, 

           Then whenever we differentiate  ’s with respect to   we will use the chain rule and 

add on a 
  

  
. Likewise, whenever we differentiate  ’s with respect to   we will add on a 

  

  
. 

Example: Find 
  

  
 and 

  

  
 for                  

Solution: Let’s start with finding  
  

  
. We first will differentiate both sides with respect to   and 

remember to add on a 
  

  
 whenever we differentiate a  . 

          
  

  
          

  

  
    

Remember that since we are assuming          then any product of  ’s and  ’s will be a 

product and so will need the product rule! 

Now, solve for 
  

  
. 
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Now we’ll do the same thing for 
  

  
 except this time we’ll need to remember to add on a 

  

  
 whenever we differentiate a  . 

    
  

  
            

  

  
     

           
  

  
            

  

  
 

          

         
 

Theorem (Implicit Function Theorem): 

Suppose   that is given implicitly as a function          by an equation of the form 

             This means that                  for all       in the domain of  . If   and  

 are differentiable, then we can use the Chain Rule to differentiate  the equation            

as follows: 

  

  
 
  

  
  

  

  
 
  

  
 

  

  

  

  
    

 
  

  
      

  

  
     

  

  

  

  
    

 
  

  
 

  

  

  

  
    

                                                          
  

  
  

  

  
  

  

  
  

  
                      (provided that 

  

  
  ) 

The formula for 
  

  
 can be obtained in a similar manner and then, 

  

  
  

  

  

  

  

 = 
  

  
 

Exercise: Use implicit Function Theorem to find 
  

  
 and 

  

  
 for 
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4.7 Gradient Vector, Tangent Planes and Linear Approximation 

We’ll take a look at tangent planes to surfaces in this section as well as an application of tangent 

planes. In this section we will also see how the gradient vector can be used to find tangent planes 

and normal lines to a surface. The gradient vector is always orthogonal, or normal, to the surface 

at a point. 

4.7.1 Gradient of a Function 

The gradient vector or gradient of   is given by 

   〈        〉             , is vector quantity.  

Or 

   〈     〉          

The definition is only shown for functions of two or three variables, however there is a natural 

extension to functions of any number of variables that we would like. 

4.7.2 Directional Derivatives 

Definition: The rate change of        in the direction of the unit vector  ⃗  〈   〉 is called the 

directional derivative and is denoted by   ⃗⃗         The definition of directional derivative is, 

   ⃗⃗           
   

                   

 
 

With the definition of the gradient we can now say that the directional derivative is denoted as 

  ⃗⃗    and given by, 

  ⃗⃗            ⃗                      (dot product of the gradient function and unit 

vector) 

There are similar formulas that can be derived by the same type of argument for functions with 

more than two variables. For instance, the directional derivative of          in the direction of 

the unit vector  ⃗  〈     〉 is given by, 

  ⃗⃗              ⃗                                   

Recall that a unit vector is a vector with length, or magnitude, of 1. 

Example: Find the directional derivative,   ⃗⃗       , where               and  ⃗  is the unit 

vector in the direction of   
  

 
. 

Solution: The gradient of   is,  
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   〈     〉  〈                  〉                and 

The unit vector giving the direction is, 

 ⃗  〈   (
  

 
)     (

  

 
)〉   〈

  

 
 
√ 

 
〉 

So, the directional derivative is, 

  ⃗⃗            ⃗                    (
  

 
)             (

√ 

 
)           

Now, plugging in the point in question gives, 

  ⃗⃗        (
  

 
)     (

√ 

 
)     

 √   

 
 

Exercise: Find the directional derivative,   ⃗⃗         , where                       in 

the direction of    〈      〉. 

Theorem: The maximum value of   ⃗⃗       (and hence then the maximum rate of change of the 

function        is given by ‖      ‖ and will occur in the direction given by         

Example: Suppose that the height of a hill above sea level is given by                

      . If you are the point (60,100) in what direction is the elevation changing fast? What is the 

maximum rate of change of the elevation at this point? 

Solution: The gradient vector of   is, 

       〈             〉 

The maximum rate of change of the elevation will then occur in the direction of  

           〈       〉 

Note: Since both of the components are negative it looks like the direction of maximum rate of 

change points up the hill towards the center rather than away from the hill. 

The maximum rate of change of the elevation at this point is, 

‖          ‖  √               =√           

4.7.3 Equations of Tangent plane 

The graph of a function          is a surface in   (three dimensional space) and so we can 

now start thinking of the plane that is “tangent” to the surface as a point. Since the tangent plane 

and the surface touch at         the following point will be on both the surface and the plane. 
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          =                  

Suppose   has continuous partial derivatives. An equation of the tangent plane to the surface 

given by          at the point            is then, 

                                      

Rewrite the equation of the tangent plane (since,            ), is then, 

                                             (Try to derive it!) 

Since we want a line that is at the point            we know that this point must also be on the 

line and we know that              is a vector that is normal to the surface and hence will be 

parallel to the line. Therefore the equation of the normal line is, 

    ⃗⃗⃗⃗⃗⃗⃗⃗  〈        〉                

 〈        〉   〈                                      〉 

 〈        〉  〈                                         〉 

 〈                                                  〉   where   is unknown parameter 

Example:  Find the equation of the tangent plane and normal line to             at       . 

Solution: Here                     so that                         

        
 

    
                     

        
 

    
                     

Therefore, equation of the plane is then, 

                                             

                  

         

The normal line is,  

    ⃗⃗⃗⃗⃗⃗⃗⃗  〈      〉   〈      〉=〈            〉 
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4.7.4 Linear Approximation of a Function 

As long as we are near to the point         then the tangent plane should nearly approximate the 

function at that point. That means, the linear approximation        becomes, 

                                                    and as long as we are “near” 

        then we should have that, 

                                                          

Example: Find the linear approximation to       
  

  
 

  

 
 at         

Solution:  So, we have  

         
  

  
 

  

 
             

        
 

 
             

  

 
 

        
  

 
            

 

 
 

The tangent plane, or linear approximation, is then, 

                                                   

          
 

 
       

 

 
        

4.8 Total Differentials 

Given the function          the differential    or    is given by, 

               or                

There is a natural extension to functions of three or more variables. For instance, given the 

function            the differential is given by, 

                    

Example: Compute the differentials for         
         

Solution:     (        
               

         )           
             

4.9 Applications of Partial Derivatives 

Most of the applications will be extensions to applications to ordinary derivatives that we saw 

back in Applied Mathematics I. For instance, we will be looking at finding the absolute and 

relative extrema of a function and we will also be looking at optimization.  
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4.9.1 Extrema of a function 

Here we will see how to identify relative (or absolute) minimums and maximums. 

Definition 

1. A function        has a relative minimum at the point (a, b) if                for 

all points(x, y) in some region around (a, b). 

2. A function f(x, y) has a relative maximum at the point (a, b) if                  for 

all points (x, y) in some region around (a, b). 

Note that this definition does not say that a relative minimum is the smallest value that the 

function will ever take. It only says that in some region around the point       the function will 

always be larger than       . Outside of that region it is completely possible for the function to 

be smaller. Likewise, a relative maximum only says that around       the function will always 

be smaller than         Again, outside of the region it is completely possible that the function 

will be larger. 

Next we need to extend the idea of critical points up to functions of two variables. Recall that a 

critical point of the function      was a number     so that either         or      doesn’t 

exist. We have a similar definition for critical points of functions of two variables. 

Definition 

The point       is a critical point (or a stationary point) of        provided one of the 

following is true, 

1.          ⃗  (this is equivalent to saying that           and             

2.         and/or         doesn’t exist 

Fact 

If the point       is a relative extrema of the function        and the first order derivatives of 

f      exist at       then       is also a critical point of        and in fact we’ll have 

          ⃗⃗   

Critical points that are neither of the relative extrema (max. or min.) are called saddle points. 
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Theorem(Test for Relative Extrema): 

Suppose that       is a critical point of         and that the second order partial derivatives are 

continuous in some region that contains      . Next define, 

                          [        ]
 
 

We then have the following classifications of the critical point. 

1. If       and            then there is a relative minimum at     . 

2. If       and            then there is a relative maximum at     . 

3. If       then the point        is a saddle point. 

4. If       then the point       may be a relative minimum, relative maximum or a 

saddle point.  

Example 2: Find and classify all the critical points for                     

Solution: We first need all the first order (to find the critical points) and second order (to classify 

the critical points) partial derivatives. 

                                              

                                                                       

Then, critical points will be solutions to the system of equations,     

                              

                             

Plugging the first equation into the second equation gives, 

                         or    . 

Now use the fact that       to get the critical points. 

                            

                            

Therefore,       and       are the only critical numbers. All we need to do now is classify them. 

To do this we will need D. 

                        [        ]
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To classify these critical points all that we need to do is plug in the critical points and use the fact 

above to classify them. 

At      :                                          is a saddle point 

and  

At                                and             0 

Since both   and     are both positive at      , hence, we must have a relative minimum at the 

point. 

Exercise: Find and classify all the critical points for                           

Exercise: Determine the point on the plane           that is closest to the 

point             

4.9.2 Absolute Minimums and Maximums 

In the previous section we were asked to find and classify all critical points as relative 

minimums, relative maximums and/or saddle points. In this section we want to optimize a 

function, that is identify the absolute minimum and/or the absolute maximum of the function, on 

a given region in   . 

Definitions 

1. A region in    is called closed if it includes its boundary. A region is called open if it 

doesn’t include any of its boundary points. 

2. A region in    is called bounded if it can be completely contained in a disk. In other 

words, a region will be bounded if it is finite. 

Extreme Value Theorem 

If        is continuous in some closed, bounded set   in    then there are points in  ,         

and          so that          is the absolute maximum and          is the absolute minimum of 

the function in  . 

Note: 

1. The above theorem does NOT tell us where the absolute minimum or absolute maximum 

will occur. It only tells us that they will exist.  

2. The absolute minimum and/or absolute maximum may occur in the interior of the region 

or it may occur on the boundary of the region. 
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Finding Absolute Extrema 

The basic process for finding absolute extrema is pretty much identical to the process that we 

used in Applied Mathematics I. There will however, be some procedural changes to account for 

the fact that we now are dealing with functions of two variables. 

Thus, we need to follow the following procedures 

1.  Find all the critical points of the function that lie in the region D and determine the 

function value at each of these points. 

2. Find all extrema of the function on the boundary.  

3. The largest and smallest values found in the first two steps are the absolute minimum and 

the absolute maximum of the function. 

Example: Find the absolute minimum and absolute maximum of                    

  on the rectangle given by        and       . 

Solution: Here let’s get the picture of region, D, which is a rectangle (in this case) as follow; 

 

The boundary of this rectangle is given by the following conditions. 

Right side:             

Left side:             

Upper side:            

Lower side:             

Now, let’s find all the critical points that lie inside the given rectangle.  

Then,                              

                                               
  

 
                             

Plugging the second equation into the first equation gives us, 
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  (   
  

 
)    (  

  

 
)                 or    √  

But, the only value of x that will satisfy this is the first one (i.e.       so we can ignore 

   √           for this problem because we only want critical points in the region that 

we are given which is         

Note: Don’t forget to always check if the critical points are in the region (or on the boundary 

since that can also happen). 

Plugging     into the equation for   gives us, 

  
  

 
 

  

 
   

The single critical point, in the region is        Now, the value of the function at the critical point 

becomes, 

         

Eventually we will compare this to values of the function found in the next step and take the 

largest and smallest as the absolute extrema of the function in the rectangle. Next, let’s find the 

absolute extrema of the function along the boundary of the rectangle. 

i. Right side:             

Here note we know that     . Let’s take advantage of this by defining a 

new function as follows, 

                                               

We need to find the absolute extrema of      on the range       . First find the critical 

point(s). 

                  
 

 
.  

This is in the range and so we will need the following function evaluations. 

                                                                           (
 

 
)   (  

 

 
)  

  

 
      

In similar fashions, 

ii. Left side:             
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.  

Then the function value at the critical point and the end points are becomes, 

                                                                          (
 

 
)   (   

 

 
)  

  

 
      

iii. Upper side:            

We define a new function except this time it will be a function of x. 

Let                                               

We need to find the absolute extrema of      on the range       . First find the critical 

point(s). 

                 . 

Thus, the value of this function at the critical point and the end points is, 

                                                                                    

iv. Lower side:             

Let                                                   

Then,                   . 

Thus, the value of this function at the critical point and the end points is, 

                                                                                        

The final step to this process is to collect up all the function values for        that we’ve 

computed in this problem. Here they are, 

                                                                          

 (  
 

 
)                                                                                

 (   
 

 
)                                                                           

Consequently, the absolute minimum is at (0,0) since gives the smallest function value and the 

absolute maximum occurs at (1, -1) and (-1,-1) since these two points give the largest function 

value. 
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Exercise: Find the absolute minimum and absolute maximum of                  on 

the disk of radius 4,           

 

4.10 Lagrange Multipliers 

In the previous section we optimized (i.e. found the absolute extrema) a function on a region that 

contained its boundary. Finding potential optimal points in the interior of the region isn’t too bad 

in general, all that we needed to do was find the critical points and plug them into the function. 

However, as we saw in the examples finding potential optimal points on the boundary was often 

a fairly long and messy process. 

In this section we’ll see how to use Lagrange Multipliers to find the absolute extrema for a 

function subject to a given constraint. The constraint(s) may be the equation(s) that describe the 

boundary of a 

region although this method just requires a general constraint and doesn’t really care where the 

constraint came from. 

Let say, we want to optimize (i.e. find the minimum and maximum value of) a function, 

        , subject to the constraint             

Method of Lagrange Multipliers 

1. Solve the following system of equations. 

                      

           

2. Plug in all solutions,          from the first step into          and identify the 

minimum and maximum values, provided they exist. 

The constant,  , is called the Lagrange Multiplier. 

Notice that the system of equations actually has four equations, we just wrote the system in a 

simpler form. That is from the first equations, we have 

                      

   〈        〉   〈        〉  〈           〉 

                                and            

These three equations along with the constraint,           , give four equations with four 

unknowns      , and  . 
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Note:  

1. If we only have functions of two variables then we won’t have the third component of the 

gradient and so will only have three equations in three unknowns      and  . 

2. In some cases minimums and maximums won’t exist even though the Lagrange method 

will seem to imply that they do. 

Example: Find the dimensions of the box with largest volume if the total surface area is 64   . 

Solution:  First we need to identify the function that to be optimized as well as the constraint. 

Let’s set the length of the box to be  , the width of the box to be   and the height of the box to 

be  .  Moreover, the dimensions of a box it is safe to assume that      and   are all positive 

quantities. 

We want to find the largest volume and so the function that we want to optimize is given by, 

             

Next we know that, the constraint is, the surface area of the box must be a constant 64. The 

surface area of a box is simply the sum of the areas of each of the sides so the constraint is given 

by 

                                       

That means, the constraint function becomes,                    

Then, here are the four equations that we need to solve. 

                                                                                                                                    (1) 

                                                                                                                               (2) 

                                                                                                                                  (3) 

                                                                                                                     (4) 

To solve this system, let’s multiply equation (1) by  , equation (2) by   and equation (3) by  . 

This gives, 

                                                                                                                                    (5) 

                                                                                                                                      (6) 

                                                                                                                                  (7) 

Now, setting equations (5) and (6) equal gives, 
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                                     or          

This gave two possibilities. The first,     is not possible since if this was the case equation (1) 

would reduce to 

            or      

Since we are talking about the dimensions of a box neither of these are possible so we can 

discount       This leaves the second possibility 

                  

             or        

Since we know that       (again since we are talking about the dimensions of a box) we can 

cancel the z from both sides. This gives, 

                                                                                                                                                        (8) 

Next, let’s set equations (6) and (7) equal that gives, 

                

                                     or          

            or            

            or         or       

As already discussed we know that λ = 0 won’t work and so this leaves,        

We can also say that x ≠ 0 since we are dealing with the dimensions of a box so we must have, 

                                                                                                                                                                (9) 

Plugging equations (8) and (9) into equation (4) we get, 

                              √
  

 
        

However, we know that y must be positive since we are talking about the dimensions of a box. 

Therefore, the only solution that makes physical sense here is 

            

Since we’ve only got one solution we might be tempted to assume that these are the dimensions 

that will give the largest volume. The method of Lagrange Multipliers will give a set of points 

that will either maximize or minimize a given function subject to the constraint, provided there 
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actually are minimums or maximums. The function itself,              will clearly have 

neither minimums or maximums unless we put some restrictions on the variables. 

Exercise: Find the maximum and minimum of              subject to the constraint     

         

Note: If we want to optimize (i.e. find the minimum and maximum value of) a function, 

        , subject to the constraint            and           . 

The system that we need to solve in this case is, 

                      +            

           

           

Exercise: Find the maximum and minimum of                subject to the constraints 

          and          . 

 

                                 

 

 

 

 

 


